
Lists

We have seen lists already. [3, 2, 27, 54] is a list of 4
numbers. ["Eric", "Ginger", "Jack"] is a list of 3
strings. There is a lot more that can be done with
lists. After strings lists are the most important way to
structure data.

In many situations where we use lists to store data
we start with an empty list and build up the data
one entry at a time.

 L = []

turns L into an empty list

 L.append(x)

adds x as a new entry onto the end of L.

For example,
 L = []
 L.append(23)
 L.append(14)
 L.append(5)

turns L into the list [23, 14, 5]

Here is a program that reads a bunch of data, then
prints it:

def main():
 L = []
 done = False
 while not done:
 x = eval(input(">>> "))
 if x == 0:
 done = True
 else:
 L.append(x)
 for data in L:
 print(data)

Lists are usually easy to work with. The problems
that come up tend to be with passing lists as
arguments to functions.

The tricky places are generally due to confusions
between the value of a list and the data the list
contains. The value of a list is the location in
memory where it is stored. Of course, you can't
know where this is.

Lists are mutable structures because you can change
the data that is stored in a list. If you start
 L = [1, 2, 3]
 L[1] = 45
then L becomes the list [1, 45, 3]

Strings are immutable; if S is "Bob Geitz" you can't
say S[1] = 'u' .

This means the following program works as you
would expect:

def add23ToList(L):
 L.append(23)

def main():
 myList = [1, 2, 3]
 add23ToList(myList)
 print(myList)

main() # prints [1, 2, 3, 23]

This doesn't work the way you might expect:
def changeList(L):
 L = [23]
def main()::
 myList = [5]
 changeList(myList)
 print(myList)

main() # prints [5]

Remember that changeList's L and main's L are
different variables. Once changeList() assigns a new
list to L, changeList's L and main's L refer to different
lists.

